

			 HEXEN Specs v1.00

		 The Official Hexen Technical Specs

		 Author: Ben Morris (bmorris@islandnet.com)

		Information from Raven provided by Ben Gokey

	 Additional information & corrections by Jack Vermeulen,

			 Sensor Based Systems, Inc.

			 [Disclaimer]

 The text contained in this document is for informational purposes only.

 If you decide to use this information in any way, neither id Software,

 Raven Software, Ben Morris, nor SBS can be held responsible for any damages

 or losses (including, but not limited to: dismembered bodily parts,

 telefrags and lack of sleep) incurred by this information's use. Although

 this is an "Official" specification, some of the information contained

 within might be old, or just plain typed in wrong. You have been warned.

				 !!!

 NB: This version of the specs, 0.9, is a preliminary release. Most of

 the information here is tried and true, but there's a good chance there

 are errors in the file. If something doesn't look right, or really IS

 wrong, please contact me (Ben Morris) at the address above. Please do

 NOT contact me about new versions of the specs; I will release the new

 versions when they are ready. Thanks.

 NOTE :

 This document was edited and reformatted with some additions to

 make it easier to view on screen or to clarify. The form feeds were

 removed to save paper. Sections were corrected or added as noted.

Table of Contents (added to original)

==========

 1. About this file

 2. Definitions used in this File

 3. Introduction to Hexen

 4. Hexen Data Structures

 5. Hexen Script Language

 6. Flats with special properties

 7. The MAPINFO lump

 8. PolyObjects

 9. List of Spawnable Objects

 10. List of Activateable/Deactivateable Objects

 11. List of THINGS that require arguments

 12. Sector Specials

 13. Action Specials

 14. Sector Sounds for ChangeSectorSound() special

 15. Sounds for ThingSound() (added)

 16. Key Numbers

1
.

About This File

===========
==

 This file was written for those who are interested in the inner workings of

 Hexen. It doesn't contain playing tips or information on how to get Hexen

 working on your system.

 This file is intended to be supplementary to Matt Fell's "Unofficial DOOM

 Specs", which probably came with your copy of DOOM or DOOM][. Wherever

 it's relevant, this file refers to a specific section in the DOOM specs (be

 sure you have version 1.666 or later!), so it's a good idea to have a copy

 at hand.

 You can also refer to the online Help in DeeP for further reference to

 basic definitions.

2.
 Definitions used in this File

==============
========

 Angle [0..255] Used in "angle" parameters to Special types:

		0 East 32 Northeast

		64 North 96 Northwest

		128 West 160 Southwest

		192 South 224 Southeast

	 * NOTE that this differs from DOOM/Heretic in that 45/90

		degree increments are not used. However, this difference

		does _not_ apply for the angles used for the THINGS in

		map editing - they are the same as DOOM's (eg: 0 = East,

		90 = North, etc.)

 Tics Time unit of length 1/35 second. So, 35 tics = 1 second.

 Octics Time unit of length 8 tics. So, 8 octics = 1 second.

3.
Introduction to Hexen

===========
=======

 Hexen is the sequel to Heretic, Raven Software's first collaboration with id

 Software.

 Hexen's major difference from Heretic and DOOM is its programmability.

 Hexen features a powerful script language that can be used to create a wide

 variety of in-game effects such as traps, puzzles and even earthquakes!

4.
 Hexen Data Structures

=============
======

 This section outlines the format of the new data blocks in a Hexen map -

 the LINEDEF and THING structures. These structures have changed from the

 versions used in DOOM and Heretic [see DOOM Specs ref and DeeP help].

 The Hexen LINEDEF structure

 Offset Size Meaning

 0 word the line's start-vertex

 2 word the line's end-vertex

 4 word line flags (see below)

 6 byte special type (see [Specials])

 7 5 bytes special arguments

 12 word the line's right sidedef number

 14 word the line's left sidedef number

 Line Flags

 The following flags are starred with an asterisk if they're new for

 Hexen:

 Bits Meaning when Set

 0 impassable - the line cannot be crossed.

 1 impassable to monsters only.

 2 two-sided

 3 upper texture is unpegged (drawn from top-down)

 4 lower/middle texture is unpegged (drawn from bottom-up)

 5 secret - the line appears as impassable on the automap.

 6 sound can't travel through the line for monsters' ears.

 7 never draw the line on the auto-map, even with the

		map cheat enabled.

 8 the line is always drawn on the auto-map, even if it

		hasn't been seen by the player.

 * 9 the line's special ([3-1]) is repeatable, ie: it can

		be activated more than once.

 * 10..12 the line's special activation, ie: how the special is

		activated.

		Value Activated when...

		0 Player crosses the line

		1 Player uses the line with the use key

		2 Monster crosses the line

		3 Projectile impacts the wall

		4 Player pushes the wall

		5 Projectile crosses the line

		To get the special activation, use the following formula:

		activation := (line.flags BITAND 0x1C00) BITSHIFTRIGHT 10

 The Hexen THING structure

 Offset Size Meaning

 * 0 word thing ID - used in scripts and specials to

			 identify a THING or a set of THINGs.

 2 word x-position on the map

 4 word y-position on the map

 * 6 word starting altitude on the map - the THING

			 is created at this altitude above the floor

			 of the sector it's in when the map is entered,

			 and is immediately subjected to gravity.

 8 word the angle the thing is facing when the map

			 is entered.

 10 word the thing type (see below)

 * 12 word thing flags (see below)

 14 byte special type (see [Specials]). a thing's

			 special is activated when the thing is

			 killed (Monster), destroyed (Tree, Urn, etc.),

			 or picked up (Artifact, Puzzle Piece.)

 15 5 bytes special arguments, 1 byte each

 Thing Flags

 The following flags are starred with an asterisk if they're new for

 Hexen:

 Bits Meaning when Set

 0 the thing appears on the Easy skill settings (1-2)

 1 the thing appears on the Normal skill setting (3)

 2 the thing appears on the Hard skill settings (4-5)

 3 the thing is deaf - it sits around until it's

		hurt, or until it sees a player.

 * 4 the thing is dormant - it never wakes up until it's

		activated using the Thing_Activate() special.

 * 5 the thing appears for the Fighter class.

 * 6 the thing appears for the Cleric class.

 * 7 the thing appears for the Mage class.

 * 8 the thing appears in single-player games.

 * 9 the thing appears in cooperative games.

 * 10 the thing appears in deathmatch games.

 Each "thing appears" flag must be set for each condition under which the

 thing is to appear. For multi-player games involving more than one

 class, a thing that is set for one of the classes involved will also appear

 for the other two classes in the game.

 For example, if you set the three pieces of the Fighter's sword to appear

 for only the Fighter (bit 5 is set) and in Deathmatch (bit 10 is set),

 if a Mage or a Cleric is also playing, the pieces of the sword will be

 visible to them, too.

 Thing Types

 Creatures as well as some objects can be activated and/or deactivated with

 the ThingActivate and ThingDeactivate line specials.

 Creatures will freeze when deactivated and resume when activated.

 Activation can also be used to bring a "dormant" creature to life.

 If a creature has a special, that special will be activated upon its death.

 Also, if the creature is teleported away using the banishment device

 (teleport other), the special will be activated and then removed from the

 creature.

 [Sorted list created by SBS, original was hard to find stuff in]

 Type Name

 1 Player_1_start

 2 Player_2_start

 3 Player_3_start

 4 Player_4_start

 5 Z_WingedStatue

 6 ZC_Rock1

 7 ZC_Rock2

 9 ZC_Rock3

 10 2C_SerpentStaff

 11 Player_Deathmatch

 12 4F_3Blade

 13 4F_2Crosspiece

 14 Player_TeleportSpot

 15 ZC_Rock4

 16 4F_1Hilt

 17 Z_Chandelier

 18 4C_3Arc

 19 4C_2Cross

 20 4C_1Shaft

 21 4M_3Skull

 22 4M_2Stub

 23 4M_1Stick

 24 ZF_TreeDead

 25 ZF_TreeDestructible

 26 ZS_Tree2

 27 ZS_Tree1

 28 ZF_StumpBurned

 29 ZF_StumpBare

 30 A_Porkelator

 31 C_Demon

 32 A_HealingComplete (Urn)

 33 A_Torch

 34 C_Wraith

 36 A_ChaosDevice

 37 ZS_Stump1

 38 ZS_Stump2

 39 ZF_ShroomLarge1

 40 ZF_ShroomLarge2

 41 ZC_ShroomLarge3

 42 ZC_ShroomSmall1

 44 ZC_ShroomSmall2

 45 ZC_ShroomSmall3

 46 ZF_ShroomSmall1

 47 ZF_ShroomSmall2

 48 ZC_Stalagmite_Pillar

 49 ZC_StalagmiteLarge

 50 ZC_StalagmiteMedium

 51 ZC_StalagmiteSmall

 52 ZC_StalactiteLarge

 53 2M_ConeOfShards

 54 Z_Wall_Torch_Lit

 55 Z_Wall_Torch_Unlit

 56 ZC_StalactiteMedium

 57 ZC_StalactiteSmall

 58 ZS_Moss1

 59 ZS_Moss2

 60 ZS_Vine

 61 ZG_CorpseKabob

 62 ZG_CorpseSleeping

 63 ZG_TombstoneRIP

 64 ZG_TombstoneShane

 65 ZG_TombstoneBigCross

 66 ZG_TombstoneBrianR

 67 ZG_TombstoneCrossCircle

 68 ZG_TombstoneSmallCross

 69 ZG_TombstoneBrianP

 71 ZG_CorpseHanging

 72 ZP_GargPortalTall

 73 ZP_GargIceTall

 74 ZP_GargPortalShort

 76 ZP_GargIceShort

 77 Z_Banner

 78 ZF_TreeLarge1

 79 ZF_TreeLarge2

 80 ZF_TreeGnarled1

 81 A_HealingWimpy (Vial)

 82 A_HealingHefty (Flask)

 83 A_WingsOfWrath

 84 A_IconOfDefender

 86 A_DarkServant

 87 ZF_TreeGnarled2

 88 ZS_Log

 89 ZI_IcicleLarge

 90 ZI_IcicleMedium

 91 ZI_IcicleSmall

 92 ZI_IcicleTiny (missing in spec)

 93 ZI_IceSpikeLarge

 94 ZI_IceSpikeMedium

 95 ZI_IceSpikeSmall

 96 ZI_IceSpikeTiny (missing in spec)

 97 ZW_RockBrownLarge

 98 ZW_RockBrownSmall

 99 ZW_RockBlack

 100 ZM_Rubble1

 101 ZM_Rubble2

 102 ZM_Rubble3

 103 Z_VasePillar

 104 ZM_Pot1

 105 ZM_Pot2

 106 ZM_Pot3

 107 C_Centaur

 108 ZG_CorpseLynched

 109 ZG_CorpseNoHeart

 110 ZG_CorpseSitting

 111 ZG_BloodPool

 113 Spawn_Leaf

 114 C_Bishop

 115 C_CentaurLeader

 116 Z_TwinedTorch

 117 Z_TwinedTorch_Unlit

 118 Z_GlitterBridge

 119 Z_Candle

 120 C_SerpentLeader

 121 C_Serpent

 122 Mana_1

 123 3F_Hammer

 124 Mana_2

 140 Z_TeleportSmoke

 254 C_Dragon (Death Wyvern)

 1400 SS_Stone

 1401 SS_Heavy

 1402 SS_Metal

 1403 SS_Creak

 1404 SS_Silent

 1405 SS_Lava

 1406 SS_Water

 1407 SS_Ice

 1408 SS_EarthCrack

 1409 SS_Metal2

 1410 SE_Wind

 3000 PO_Anchor

 3001 PO_StartSpot

 3002 PO_StartSpot_Crush

 8000 A_Repulsion

 8002 A_BootsOfSpeed

 8003 A_BoostMana

 8004 ManaCombined

 8005 Ar_Armor

 8006 Ar_Shield

 8007 Ar_Helmet

 8008 Ar_Amulet

 8009 3C_Firestorm

 8010 2F_Axe

 8020 C_IceGuy

 8030 K_SteelKey

 8031 K_CaveKey

 8032 K_AxeKey

 8033 K_FireKey

 8034 K_EmeraldKey (was CastleKey)

 8035 K_DungeonKey

 8036 K_SilverKey

 8037 K_RustyKey

 8038 K_WasteKey

 8039 K_SwampKey

 8040 3M_Lightning

 8041 A_Bracers

 8042 Z_FireBull

 8043 Z_FireBull_Unlit

 8044 ZP_GargCorrode

 8045 ZP_GargLavaDrkTall

 8046 ZP_GargLavaBrtTall

 8047 ZP_GargBrnzTall

 8048 ZP_GargStlTall

 8049 ZP_GargLavaDrkShort

 8050 ZP_GargLavaBrtShort

 8051 ZP_GargBrnzShort

 8052 ZP_GargStlShort

 8060 Z_FireSkull

 8061 Z_BrassBrazier

 8062 ZF_DestructibleTree

 8063 Z_Chandelier_Unlit

 8064 Z_ArmorSuit

 8065 Z_Bell

 8066 Z_BlueCandle

 8067 ZG_IronMaiden

 8068 ZF_Hedge

 8069 Z_Cauldron

 8070 Z_Cauldron_Unlit

 8071 Z_Chain32

 8072 Z_Chain64

 8073 Z_ChainHeart

 8074 Z_ChainLHook

 8075 Z_ChainSHook

 8076 Z_ChainSpikeBall

 8077 Z_ChainSkull

 8080 C_Demon2

 8100 Z_Barrel

 8101 ZF_Shrub1

 8102 ZF_Shrub2

 8103 Z_Bucket

 8104 ZF_ShroomBoom

 8200 k_CastelKey (was K_GoldKey)

 8500 ZM_LgStein

 8501 ZM_SmStein

 8502 ZM_CandleWeb

 8503 ZM_SmCandle

 8504 ZM_LgCandle

 8505 ZM_GobletSpill

 8506 ZM_GobletTall

 8507 ZM_GobletSmall

 8508 ZM_GobletSilver

 8509 ZM_CleaverMeat

 9001 X_MapSpot

 9002 ZZ_Skull

 9003 ZZ_BigGem

 9004 ZZ_GemRed

 9005 ZZ_GemGreen1

 9006 ZZ_GemBlue1

 9007 ZZ_Book1

 9008 ZZ_Book2

 9009 ZZ_GemGreen2

 9010 ZZ_GemBlue2

 9011 ZZ_WingedStatueNoSkull

 9012 ZZ_GemPedestal

 9013 X_MapSpotGravity

 9014 ZZ_Skull2

 9015 ZZ_FWeapon

 9016 ZZ_CWeapon

 9017 ZZ_MWeapon

 9018 ZZ_Gear

 9019 ZZ_Gear2

 9020 ZZ_Gear3

 9021 ZZ_Gear4

 10000 Spawn_Fog

 10001 Spawn_Fog_a

 10002 Spawn_Fog_b

 10003 Spawn_Fog_c

 10011 C_Wraith2

 10030 C_Ettin

 10040 A_Banishment

 10060 C_FireImp

 10080 C_Heresiarch

 10090 Spike_Down

 10091 Spike_Up

 10100 C_FighterBoss

 10101 C_ClericBoss

 10102 C_MageBoss

 10110 A_Flechette

 10120 A_HealRadius

 10200 C_Korax

 10225 Spawn_Bat

 10500 Z_SmallFlame_Timed

 10501 Z_SmallFlame_Permanent

 10502 Z_LargeFlame_Timed

 10503 Z_LargeFlame_Permanent

 5
 Hexen Script Language

============
========

 The Hexen Script Language is called the "Action Code Script", or ACS.

 Each map has an ACS file that contains the scripts specific to that map.

 The scripts within it are identified using numbers that the general special

 ACS_Execute() uses.

 A script itself can call the ACS_Execute() special, which will spawn

 (start) another script that will run concurrently (at the same time)

 with the rest of the scripts.

 A script can also be declared as OPEN, which will make it run automatically

 upon entering the map. This is used for perpetual type effects, level

 initialization, etc.

 The compiler takes the ACS file and produces and object file that is the

 last lump in the map WAD (BEHAVIOR).

 To create a compiled ACS file from a text script from DOS type:

 C:\HEXEN > ACS filename [enter]

 (See Note below)

 The output of ACS produces 'filename.o' from 'filename.acs'. The contents

 of this output file (filename.o) can be directly used as the BEHAVIOR

 lump of the map it's to be used with.

 SBS Note : DeeP and other editors directly integrate seamless support for

	 the ACS compiler without having to exit to DOS. The new

	 behavior Lump can be directly saved with no additional steps

	 required. There are 2 examples of scripts. One is SCRIPTS.ACS

	 and the other is HEXENTUT.ACS, with corresponding PWAD files.

	 In DeeP, select "Compile Script" from the F6 HEXEN development

	 menu.

 Script Shared Structure

 Map scripts should start with #include "common.acs", which is just...

 #include "specials.acs"

 #include "defs.acs"

 #include "wvars.acs"

 The file "specials.acs" defines all the general specials. These are used

 within scripts just like function calls. The file "defs.acs" defines a

 bunch of constants that are used by the scripts. The file "wvars.acs"

 defines all the world variables. It needs to be included by all maps so

 they use consistent indexing.

 Variables and their Scope

 There is only one data type ACS, a 4 byte integer. Use the keyword int to

 declare an integer variable. You may also use the keyword str, it is

 synonymous with int. It's used to indicate that you'll be using the

 variable as a string. The compiler doesn't use string pointers, it uses

 string handles, which are just integers.

 Declaring a variable

 There are two "types" of variables: 1. "str"

				 2. "int":

	examples:

	str mystring;

	int myint;

	or:

	str texture, sound;

	int i, tid;

 * Note: You can't assign a variable in its declaration; you must give it a

 value in a different expression.

 The SCOPE of a variable is one of the following:

 1. World-scope

 2. Map-scope,

 3. Script-scope.

 1. World-scope

 World-scope variables are global, and can be accessed in any map.

 Hexen maintains [n] permanent globals, numbered 0-[n-1]. You must

 assign one of the globals a name in order to access it, like this:

	world int 5:Grunt;

 This tells Hexen to reference world global number 5 whenever it

 encounters the name "Grunt".

 2. Map-scope

 Map-scope variables are local to the current map. They must be

 declared outside of any script code, but without the world keyword.

 These variables can't be accessed in any other map.

 Script-scope variables are local to the current script - they

 can't be accessed by any other script or map.

 Here's some code that shows the declaration of all three scopes:

 world int 3:DungeonAccess; // World-scope

 int mapTimer; // Map-scope

 script 4 (void)

 {

	 int x, y; // Script-scope

	 ...

 }

 Language Structure

 Here is a quick reference manual type definition of the language. It

 ends with a description of all the internal functions.

 Keywords

 The following identifiers are reserved for use as keywords, and may

 not be used otherwise:

 break

 case

 const

 continue

 default

 define

 do

 else

 goto

 if

 include

 int

 open

 print

 printbold

 restart

 script

 special

 str

 suspend

 switch

 terminate

 until

 void

 while

 world

 Comments

 Comments are ignored by the script compiler. There are two forms:

 1. /*...you comment... */

 All information between the first /* and last */ is ignored.

 The leading /* and trailing */ are required.

 2. //

 All information past the // is ignored

 examples:

 /*

 This is a comment.

 */

 int a; // And this is a comment

 World-variable definitions

 world int <constant-expression> : <identifier> ;

 world int <constant-expression> : <identifier> , ... ;

 Map-variable definitions

 Declares a variable local to the current map.

 int <identifier> ;

 str <identifier> ;

 int <identifier> , ... ;

 Include Directive

 Includes the source of the specified file and compiles it. This acts the

 same as if you have "included" the source in the file it resides in. Use

 this to make a common reference set of code you use often.

 #include <string-literal>

 The supplied required includes shown earlier are an illustration:

 #include "specials.acs"

 #include "defs.acs"

 #include "wvars.acs"

 Define Directive

 Replaces an identifier with a constant expression.

 #define <identifier> <constant-expression>

 Whenever "identifier" is used in the source, the "constant-expression"

 is substituted. This is similar to a macro or keyboard short-cut.

 Constant Expressions

 <integer-constant>:

 decimal 200

 hexadecimal 0x00a0, 0x00A0

 fixed point 32.0, 0.5, 103.329

 any radix <radix>_digits :

 binary 2_01001010

 octal 8_072310

 decimal 10_50025

 hexadecimal 16_00a03f2

 String Literals

 <string-literal>: "string"

 Example : "Hello there"

 Script Definitions

 To define a script:

 <script-definition>:

 script <constant-expression> (<arglist>) { <statement> }

 script <constant-expression> OPEN { <statement> }

 For example:

 script 10 (void) { ... }

 script 5 OPEN { ... }

 * Note that OPEN scripts do not take arguments.

 Statements

 <statement>:

 <declaration-statement>

 <assignment-statement>

 <compound-statement>

 <switch-statement>

 <jump-statement>

 <selection-statement>

 <iteration-statement>

 <function-statement>

 <linespecial-statement>

 <print-statement>

 <control-statement>

 Declaration Statements

 Declaration statements create script variables.

 <declaration-statement>:

 int <variable> ;

 int <variable> , <variable> , ... ;

 Assignment Statements

 Assigns an expression to a variable.

 <assignment-statement>:

 <variable> <assignment-operator> <expression> ;

 <assignment-operator>:

 =

 +=

 -=

 *=

 /=

 %=

 * Note: An assignment of the form V <op>= E is equivalent to V = V <op> E.

 For example:

 A += 5; is the same as

 A = A + 5;

 Compound Statements

 <compound-statement>:

 { <statement-list> }

 <statement-list>:

 <statement> <statement> <...>

 Switch Statements

 A switch statement evaluates an integral expression and passes control

 to the code following the matched case.

 <switch-statement>:

 switch (<expression>) { <labeled-statement-list> }

 <labeled-statement>:

 case <constant-expression> : <statement>

 default : <statement>

 Example:

 switch (a)

 {

 case 1: // when a == 1

	b = 1; // .. this is executed,

	break; // and this breaks out of the switch().

 case 2: // when a == 2

	b = 8; // .. this is executed,

		 // but there is no break, so it continues to the next

		 // case, even though a != 3.

 case 3: // when a == 3

	b = 666; // .. this is executed,

	break; // and this breaks out of the switch().

 default: // when none of the other cases match,

	b = 777; // .. this is executed.

 }

 Note for C users:

	While C only allows integral expressions in a switch

	statement, ACS allows full expressions such as "a + 10".

 Jump Statements

 A jump statement passes control to another portion of the script.

 <jump-statement>:

 continue ;

 break ;

 restart ;

 Iteration Statements

 <iteration-statement>:

 while (<expression>) <statement>

 until (<expression>) <statement>

 do <statement> while (<expression>) ;

 do <statement> until (<expression>) ;

 for (<assignment-statement> ; <expression> ; <assignment-statement>)

	 <statement>

 The continue, break and restart keywords can be used in an iteration

 statement:

 - the continue keyword jumps to the end of the last <statement> in the

 iteration-statement. The loop continues.

 - the break keyword jumps right out of the iteration-statement.

 Function Statements

 A function statement calls a Hexen internal-function, or a Hexen

 linespecial-function.

 <function-statement>:

 <internal-function> | <linespecial-statement>

 <internal-function>:

 <identifier> (<expression> , ...) ;

 <identifier> (const : <constant-expression> , ...) ;

 <linespecial-statement>:

 <linespecial> (<expression> , ...) ;

 <linespecial> (const : <constant-expression> , ...) ;

 Print Statements

 <print-statement>:

 print (<print-type> : <expression> , ...) ;

 printbold (<print-type> : <expression> , ...) ;

 <print-type>:

 s string

 d decimal

 c constant

 Note : Some combinations of text cause playing errors. The text appear

	 to be hard coded in the .EXE. If you have a strange error and

	 have a "print" statement, remove the statement and see if the error

	 still occurs. If it now works, change your text.

	

 Selection Statements

 <selection-statement>:

 if (<expression>) <statement>

 if (<expression>) <statement> else <statement>

 Control Statements

 <control-statement>:

 suspend ; // suspends the script

 terminate ; // terminates the script

 Internal Functions

 void tagwait(int tag);

 The current script is suspended until all sectors marked with

 <tag> are inactive.

 void polywait(int po);

 The current script is suspended until the polyobj marked with

 <po> is incactive.

 void scriptwait(int script);

 The current script is suspended until the script specified by

 <script> has terminated.

 void delay(int ticks);

 The current script is suspended for a time specified by <ticks>.

 A tick represents one cycle from a 35Hz timer.

 void changefloor(int tag, str flatname);

 --

 The floor flat for all sectors marked with <tag> is changed to

 <flatname>.

 void changeceiling(int tag, str flatname);

 --

 The ceiling flat for all sectors marked with <tag> is changed to

 <flatname>.

 int random(int low, int high);

 Returns a random number between <low> and <high>, inclusive. The

 values for <low> and <high> range from 0 to 255.

 int lineside(void);

 Returns the side of the line the script was activated from. Use

 the macros LINE_FRONT and LINE_BACK, defined in "defs.acs".

 void clearlinespecial(void);

 The special of the line that activated the script is cleared.

 int playercount(void);

 Returns the number of active players.

 int gametype(void);

 Returns the type of game being played:

 GAME_SINGLE_PLAYER

 GAME_NET_COOPERATIVE

 GAME_NET_DEATHMATCH

 int gameskill(void);

 Returns the skill of the game being played:

 SKILL_VERY_EASY

 SKILL_EASY

 SKILL_NORMAL

 SKILL_HARD

 SKILL_VERY_HARD

 Example:

 int a;

 a = gameskill();

 switch(gameskill())

 {

 case SKILL_VERY_EASY:

 ...

 case SKILL_VERY_HARD:

 ...

 }

 int timer(void);

 Returns the current leveltime in ticks.

 void sectorsound(str name, int volume);

 Plays a sound in the sector the line is facing. <volume> has the

 range 0 to 127.

 void thingsound(int tid, str name, int volume);

 Plays a sound at all things marked with <tid>. <volume> has the

 range 0 to 127. See section 15 for values.

 void ambientsound(str name, int volume);

 --

 Plays a sound that all players hear at the same volume. <volume> has

 the range 0 to 127. See section 15 for values.

 void soundsequence(str name);

 Plays a sound sequence in the sector the line is facing.

 int thingcount(int type, int tid);

 Returns a count of things in the world. Use the thing type definitions

 in defs.acs for <type>. Both <type> and <tid> can be 0 to force the

 counting to ignore that information.

 Examples:

 // Count all ettins that are marked with TID 28:

 c = thingcount(T_ETTIN, 28);

 // Count all ettins, no matter what their TID is:

 c = thingcount(T_ETTIN, 0);

 // Count all things with TID 28, no matter what their type is:

 c = thingcount(0, 28);

 void setlinetexture(int line, int side, int position, str texturename);

 Sets a texture on all lines identified by <line>. A line is identified by

 giving it the special Line_SetIdentification in a map editor.

 <side>:

 SIDE_FRONT

 SIDE_BACK

 <position>:

 TEXTURE_TOP

 TEXTURE_MIDDLE

 TEXTURE_BOTTOM

 Examples:

 setlinetexture(14, SIDE_FRONT, TEXTURE_MIDDLE, "ice01");

 setlinetexture(3, SIDE_BACK, TEXTURE_TOP, "forest03");

 void setlineblocking(int line, int blocking);

 Sets the blocking (impassable) flag on all lines identified by <line>.

 <blocking>:

 ON

 OFF

 Example:

 setlineblocking(22, OFF);

 void setlinespecial(int line, int special, int arg1, int arg2,

		 int arg3, int arg4, int arg5);

 Sets the line special and args on all lines identified by <line>.

 6

 Flats with special properties

================
=======

	Lava Lava does damage

	Water Makes things sink

	Sludge Makes things sink

	Ice Changes friction

 7
The MAPINFO lump

==================

 This is a lump in the .WAD that gives attributes to each map. This entry

 does not go with each map - there is only one MAPINFO lump in the entire

 IWAD. If you include a MAPINFO lump in a PWAD, make sure it's got

 information for all the possible maps the player will be entering.

 map: Number and name of map [1..60]

 warptrans: Actual map number in case maps are not sequential [1..60]

 next: Map to teleport to upon exit of timed deathmatch [1..60]

 cdtrack: CD track to play during level

 cluster: Defines what cluster level belongs to

 sky1: Default sky texture; followed by speed

 sky2: Alternate sky displayed in Sky2 sectors ; followed by speed

 doublesky: parallax sky: sky2 behind sky1

 lightning: Keyword indicating use of lightning on the level

		flashes from sky1 to sky2 (see also: IndoorLightning special)

 fadetable: Lump Name of fade table {fogmap}

 Example MapInfo entry:

		map 1 "Winnowing Hall"

		warptrans 1

		next 2

		cluster 1

		sky1 SKY2 2 ; 2 is the sky scroll speed

		sky2 SKY3 0 ; 0 means don't scroll sky

		lightning

		doublesky

		cdtrack 13

 Note on "next" integer (for timed deathmatches):

 In normal gameplay, there is no linear fashion in which the game

 progresses from one level to another; you just go through a teleport

 somewhere on a level, and it takes you to somewhere on another

 level.

 For -timer deathmatch, the game needs to know what level to

 proceed to because it isn't always just the next higher level.

 A note about the WARPTRANS keyword: Maps are edited and named

 MAPxx, where xx is a number from 01 to 63. This is the number that

 is used from within scripts when a map is referred to, and by the

 MAP keyword in the MAPINFO lump.

 However, the -warp option and the warping cheat use a different set

 of numbers. This different set of numbers is set by the WARPTRANS keyword.

 By default, the WARPTRANS value is set to the same number as the map.

 Our designers starting making maps with numbers that had big gaps between

 them, and then made the scripts refer to these numbers, so we needed a

 way to pack all the map numbers into a continuous stream for the -warp

 option. Also, the accepted range for a WARPTRANS value is 1-31. Makes it

 easy when using DM.

 Note on "cluster" integer:

 The game maps are divided into clusters. When you enter a new cluster,

 you can never again visit any of the levels from the previous cluster.

 This makes it so each individual save game only needs to backup map

 archives for about 6-7 maps, and provides for a milestone marker of

 sorts for game play, like an episode .

 A Hexen backdrop and some text are given at the end of each cluster.

 If you don't enter a cluster, it defaults to 0. The commercial IWAD

 separates its 31 maps into 5 clusters.

 8
 PolyObjects

===========

 Polyobjs are one-sided lines that are built somewhere else on the map, and

 then later translated to the desired start spot on the map at level load.

 In building polyobjs, two different line specials can be used to determine

 the line drawing order:

	Polyobj_ExplicitLine(polyNumber, orderNumber, polyMirror, sound);

	Polyobj_StartLine (polyNumber, polyMirror, sound);

 Each polyobj should have a unique polyNumber, which is used in poly line

 specials to refer to a particular polyobj.

 polyMirror refers to a second polyobj that will "mirror" all actions of the

 first polyobj. For instance, if a polyobj is rotated to the right by 90

 degrees, then that polyobj's mirror will rotate left 90 degrees.

 Note that having two polyobjs mirror each other is not considered to be a

 good thing, but in general won't cause problems because a poly can only

 do one particular action at a time.

 Meaning: if that poly that rotated left by 90 degrees then mirrored the

 right-turning polyobj, the right-turning poly would ignore any attempt

 to rotate it again, as it would already be being acted upon.

 The last parameter to these specials refers to a particular sound type

 that should play when the poly is moved/rotated. See the section on

 attaching sounds to a moving sector for more info.

 Polyobj_StartLine():

 A very basic special. Place it on a particular polyobj line, and that line

 will be the first line rendered on the polyobj.

 The rendering order for all other lines are determined by iterating through

 to the next line that has a first point identical to the start line's second

 point. The third line rendered will be the next line that has a first point

 identical to the second line's second point, and so on and so forth.

 This method works well for polyobjs that are convex, and has the advantage

 of leaving all but one line free for other line specials.

 Polyobj_ExplicitLine:

 This special requires a bit more work to use. Each line in the polyobj

 defined using this special must use this line special. Then, a value from

 1-255 should be placed in orderNumber.

 This defines the rendering order for the lines, with a 1 being the first

 line rendered, and so on. Useful for non-convex polyobjs, but has the

 disadvantage of utilizing all line specials on the poly.

 Polyobj Start Spots and Anchor Points

 Each polyobj must have an anchor point, and a startSpot. The anchor is a

 thing placed near the polyobj when it's created that defines the origin of

 the polyobj, or the point in which it will rotate about. The anchor (and

 all polyobj lines) are directly translated to the polyobj startSpot.

 Bottom line: The anchor point is the point near the polyobj, and the

 startSpot is the point on the actual map that defines the location of the

 poly.

 There are two different types of startSpots: crushing and non-crushing.

 Pretty obvious what the difference is:)

 If the poly strikes an object, it'll first attempt to move it. If that

 fails, it will either try to damage the object, or just stop moving

 depending upon the type of startSpot.

 Please note that the ANGLE field of the startSpot and anchor points should

 be equal to the polyNumber that was previously defined for that particular

 polyobj. The polyobj stuff was done before any of the TID/thing special

 code was implemented, so Raven did this temporary hack, which turned

 permanent, as the designers had already done a ton of polyobjs, and didn't

 want to have to go back and replace them.

 9
 List of Spawnable Objects

===================
==

 Use these identifiers for the Thing_Spawn() and Thing_SpawnNoFog()

 specials:

	T_NONE

	T_CENTAUR

	T_CENTAURLEADER

	T_DEMON

	T_ETTIN

	T_FIREGARGOYLE

	T_WATERLURKER

	T_WATERLURKERLEADER

	T_WRAITH

	T_WRAITHBURIED

	T_FIREBALL1

	T_MANA1

	T_MANA2

	T_ITEMBOOTS

	T_ITEMEGG

	T_ITEMFLIGHT

	T_ITEMSUMMON

	T_ITEMTPORTOTHER

	T_ITEMTELEPORT

	T_BISHOP

	T_ICEGOLEM

	T_BRIDGE

	T_DRAGONSKINBRACERS

	T_ITEMHEALTHPOTION

	T_ITEMHEALTHFLASK

	T_ITEMHEALTHFULL

	T_ITEMBOOSTMANA

	T_FIGHTERAXE

	T_FIGHTERHAMMER

	T_FIGHTERSWORD1

	T_FIGHTERSWORD2

	T_FIGHTERSWORD3

	T_CLERICSTAFF

	T_CLERICHOLY1

	T_CLERICHOLY2

	T_CLERICHOLY3

	T_MAGESHARDS

	T_MAGESTAFF1

	T_MAGESTAFF2

	T_MAGESTAFF3

	T_MORPHBLAST

	T_ROCK1

	T_ROCK2

	T_ROCK3

	T_DIRT1

	T_DIRT2

	T_DIRT3

	T_DIRT4

	T_DIRT5

	T_DIRT6

	T_ARROW

	T_DART

	T_POISONDART

	T_RIPPERBALL

	T_STAINEDGLASS1

	T_STAINEDGLASS2

	T_STAINEDGLASS3

	T_STAINEDGLASS4

	T_STAINEDGLASS5

	T_STAINEDGLASS6

	T_STAINEDGLASS7

	T_STAINEDGLASS8

	T_STAINEDGLASS9

	T_STAINEDGLASS0

	T_BLADE

	T_ICESHARD

	T_FLAME_SMALL

	T_FLAME_LARGE

	T_MESHARMOR

	T_FALCONSHIELD

	T_PLATINUMHELM

	T_AMULETOFWARDING

	T_ITEMFLECHETTE

	T_ITEMTORCH

	T_ITEMREPULSION

	T_MANA3

	T_PUZZSKULL

	T_PUZZGEMBIG

	T_PUZZGEMRED

	T_PUZZGEMGREEN1

	T_PUZZGEMGREEN2

	T_PUZZGEMBLUE1

	T_PUZZGEMBLUE2

	T_PUZZBOOK1

	T_PUZZBOOK2

	T_METALKEY

	T_SMALLMETALKEY

	T_AXEKEY

	T_FIREKEY

	T_GREENKEY

	T_MACEKEY

	T_SILVERKEY

	T_RUSTYKEY

	T_HORNKEY

	T_SERPENTKEY

	T_WATERDRIP

	T_TEMPSMALLFLAME

	T_PERMSMALLFLAME

	T_TEMPLARGEFLAME

	T_PERMLARGEFLAME

	T_DEMON_MASH

	T_DEMON2_MASH

	T_ETTIN_MASH

	T_CENTAUR_MASH

	T_THRUSTSPIKEUP

	T_THRUSTSPIKEDOWN

	T_FLESH_DRIP1

	T_FLESH_DRIP2

	T_SPARK_DRIP

 10

 List of Activateable/Deactivateable Objects

=========================
=========

 Activatable:

	MT_ZTWINEDTORCH Lights torch

	MT_ZTWINEDTORCH_UNLIT Lights torch

	MT_ZWALLTORCH Lights torch

	MT_ZWALLTORCH_UNLIT Lights torch

	MT_ZGEMPEDESTAL Makes gem appear

	MT_ZWINGEDSTATUENOSKULL Makes skull appear in hands

	MT_THRUSTFLOOR_UP Raises thrust spike (if lowered)

	MT_THRUSTFLOOR_DOWN Raises thrust spike

	MT_ZFIREBULL Lights flames

	MT_ZFIREBULL_UNLIT Lights flames

	MT_ZBELL Rings bell

	MT_ZCAULDRON Lights flames

	MT_ZCAULDRON_UNLIT Lights flames

	MT_FLAME_SMALL Ignites flame

	MT_FLAME_LARGE Ignites flame

	MT_BAT_SPAWNER Start bat spawning

	Deactivatable:

	MT_ZTWINEDTORCH Extinguish torch

	MT_ZTWINEDTORCH_UNLIT Extinguish torch

	MT_ZWALLTORCH Extinguish torch

	MT_ZWALLTORCH_UNLIT Extinguish torch

	MT_THRUSTFLOOR_UP Lower thrust spike

	MT_THRUSTFLOOR_DOWN Lower thrust spike

	MT_ZFIREBULL Extinguish torch

	MT_ZFIREBULL_UNLIT Extinguish torch

	MT_ZCAULDRON Extinguish torch

	MT_ZCAULDRON_UNLIT Extinguish torch

	MT_FLAME_SMALL Extinguish torch

	MT_FLAME_LARGE Extinguish torch

	MT_BAT_SPAWNER Stop bat spawning

11

 List of THINGS that require arguments

=======================
========

 These THINGS ignore their special types, and use the arg0..arg5 fields

 for their own purposes:

		Type: 10225 Bat Spawner

		 arg0: frequency of spawn (1=fastest, 10=slowest)

		 arg1: spread angle (0..255)

		 arg2: unused

		 arg3: duration of bats (in octics)

		 arg4: turn amount per move (in degrees [0..255])

		Type: 10000 Fog Spawner

		 arg0: movement speed [0..10] (10 == fastest)

		 arg1: spread angle [0..128] (128 == 180 degrees)

		 arg2: Frequency of spawn [1..10] (1 == fastest)

		 arg3: Fog Lifetime [0..255] (5 == 1 second)

		 arg4: unused

		Type: 10001 Fog Patch Small

		 arg0: movement speed [0..10] (10 == fastest)

		 arg1: unused

		 arg2: unused

		 arg3: Fog Lifetime [0..255] (5 == 1 second)

		 arg4: Boolean: (0 == not moving)

		Type: 10002 Fog Patch Medium

		 arg0: movement speed [0..10] (10 == fastest)

		 arg1: unused

		 arg2: unused

		 arg3: Fog Lifetime [0..255] (5 == 1 second)

		 arg4: Boolean: (0 == not moving)

		Type: 10003 Fog Patch Large

		 arg0: movement speed [0..10] (10 == fastest)

		 arg1: unused

		 arg2: unused

		 arg3: Fog Lifetime [0..255] (5 == 1 second)

		 arg4: Boolean: (0 == not moving)

		Type: 254 Death Wyvern

		 arg0: TID of possible destination (required)

		 arg1: TID of possible destination (optional)

		 arg2: TID of possible destination (optional)

		 arg3: TID of possible destination (optional)

		 arg4: TID of possible destination (optional)

	 The Death Wyvern requires mapspots placed around the map with

	 its args containing TIDs of possible destinations, making up to 5

	 destinations possible from each position. The choice of next

	 destination is random. Note that the dragon lich's first

	 destination is the first thing that it can locate that has a TID

	 identical to it's own.

	 Type: 10200 Korax

		 TIDs:

		 245 Korax's mapthing

		 249 Teleport destination (MapSpots)

	 Scripts:

		 249 Run when korax health falls below half

		 250-254 Randomly run by korax as commands

		 255 Run upon death of korax

12
.

 Sector Specials

===============

 The following numbers are used in the sector.type field (type of

 sector):

	1 Light_Phased

	2 LightSequenceStart

	3 LightSequenceSpecial1

	4 LightSequenceSpecial2

	These specials deal with phased lightning ("moving lights"). Two

	different ways to go about doing phased lighting: automatic, or

	by-hand.

	

	The automatic method is (obviously) more convenient, but

	the by-hand method is more flexible. Light_Phased is the by-hand

	special. Place it on a sector, then set the sector's lightlevel to a

	phase index (0-63). As you place the special on nearby sectors,

	increment the index for each sector.

	Or, to use the LightSequence specials, just place the LightSequence

	special on a sector. Then, for each additional sector, alternate

	between LightSequenceSpecial1 & LightSequenceSpecial2.

	For instance, if you wanted phased lightning to flow up a staircase,

	you could either place Light_Phased on each step, and change the

	phase index (lightlevel) accordingly. Or, you could place

	LightSequenceStart on the bottom step (and set that step's lightlevel

	to something mid-ranged: 80-128 are pretty nice values), and then

	let the game calculate the phase indices for each step by placing the

	LightSequenceSpecial specials on all other steps.

	

	Note that for the LightSequenceSpecial specials to have proper

	lighting, set their lightlevels to zero, which causes it to use

	the previous sector's lightlevel. Hence, that "nice value" which

	was placed on the first step will iterate through all the other

	steps. If a step's lightlevel is not zero, then that value will

	filter down to all other steps after it.

	26 Stairs_Special1

	27 Stairs_Special2

	Used by action specials that build stairs.

	199 Light_IndoorLightning1

	Dimmer effect during lightning flash. Used for indoor areas, which

	are normally not affected by lightning.

	198 Light_IndoorLightning2

	 Same as 1, but brighter.

	200 Sky2

	Use the alternate sky specified in the mapinfo lump.

	201 Scroll_North_Slow

	202 Scroll_North_Medium

	203 Scroll_North_Fast

	204 Scroll_East_Slow

	205 Scroll_East_Medium

	206 Scroll_East_Fast

	207 Scroll_South_Slow

	208 Scroll_South_Medium

	209 Scroll_South_Fast

	210 Scroll_West_Slow

	211 Scroll_West_Medium

	212 Scroll_West_Fast

	213 Scroll_NorthWest_Slow

	214 Scroll_NorthWest_Medium

	215 Scroll_NorthWest_Fast

	216 Scroll_NorthEast_Slow

	217 Scroll_NorthEast_Medium

	218 Scroll_NorthEast_Fast

	219 Scroll_SouthEast_Slow

	220 Scroll_SouthEast_Medium

	221 Scroll_SouthEast_Fast

	222 Scroll_SouthWest_Slow

	223 Scroll_SouthWest_Medium

	224 Scroll_SouthWest_Fast

	These all scroll floor flats in their respective directions. They

	also move any objects in that direction.

13
.
 Action Specials

===============

 These are the specials found in the THING.special and LINEDEF.special

 fields.

 Floor and Ceiling Specials

 20:Floor_LowerByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

		height: relative height of move in pixels

	 Moves the floor of all sectors identified by 'tag'.

 21:Floor_LowerToLowest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

	 Lowers floor to lowest adjacent sectors' floor.

 22:Floor_LowerToNearest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

	 Lowers floor to next lower adjacent sector's floor.

 23:Floor_RaiseByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

		height: relative height of move in pixels

	 Moves the floor of all sectors identified by 'tag'.

 24:Floor_RaiseToHighest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

	 Raises floor to highest adjacent sectors' floor.

 25:Floor_RaiseToNearest / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

	 Raises floor to next higher adjacent sector's floor.

 28:Floor_RaiseAndCrush / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

		crush: damage done by crush

	 Raises floor to ceiling and does crushing damage.

 35:Floor_RaiseByValueTimes8 / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

		height: relative height of move in 8 pixel units

	 Raises the floor in increments of 8 units.

 36:Floor_LowerByValueTimes8 / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move [0..255]

		height: relative height of move in 8 pixel units

	 Lowers the floor in increments of 8 units.

 46:Floor_CrushStop / tag / arg2 / arg3 / arg4 / arg5

		tag: tag of affected sector

	 Turns off a crushing floor.

 66:Floor_LowerInstant / tag / arg2 / height / arg4 / arg5

		tag: tag of affected sector

		height: relative height in units of 8 pixels

	 Moves the floor down instantly by a specified amount.

 67:Floor_RaiseInstant / tag / arg2 / height / arg4 / arg5

		tag: tag of affected sector

		height: relative height in units of 8 pixels

	 Moves the floor up instantly by a specified amount.

 68:Floor_MoveToValueTimes8 / tag / speed / height / negative / arg5

		tag: tag of affected sector

		speed: speed of move

		height: absolute value in 8 pixel units of destination height

		negative: boolean (true if height is negative)

	 Move floor to an absolute height.

 40:Ceiling_LowerByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		height: relative height of move in pixels

	 Relative ceiling move.

 41:Ceiling_RaiseByValue / tag / speed / height / arg4 /arg5

		tag: tag of affected sector

		speed: speed of move

		height: relative height of move in pixels

	 Relative ceiling move.

 42:Ceiling_CrushAndRaise / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		crush: damage of crush

	 Lowers ceiling to crush and raises (continual until stopped)

 43:Ceiling_LowerAndCrush / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		crush: damage of crush

	 Lowers ceiling to floor and stops.

 44:Ceiling_CrushStop / tag / arg2 / arg3 / arg4 / arg5

		tag: tag of affected sector

	 Stop a crushing ceiling.

 45:Ceiling_CrushRaiseAndStay / tag / speed / crush / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		crush: damage of crush

	 Lowers ceiling to crush, raises and stays.

 69:Ceiling_MoveToValueTimes8 / tag / speed / height / negative / arg5

		tag: tag of affected sector

		speed: speed of move

		height: absolute value in 8 pixel units of destination height

		negative: boolean (true if height is negative)

	 Moves ceiling to absolute height.

 95:FloorAndCeiling_LowerByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		height: absolute value in 8 pixel units of destination height

	 Relative move of both floor and ceiling.

 96:FloorAndCeiling_RaiseByValue / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		height: absolute value in 8 pixel units of destination height

	 Relative move of both floor and ceiling.

 60:Plat_PerpetualRaise / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		delay: delay before reversing direction

	 Continually raises and lowers platform.

 61:Plat_Stop / tag / arg2 / arg3 / arg4 / arg5

		tag: tag of affected sector

	 Stops a PerpectualRaise platform.

 62:Plat_DownWaitUpStay / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		delay: delay before reversing direction

	 One cycle of lowering and raising.

 63:Plat_DownByValue / tag / speed / delay / height / arg5

		tag: tag of affected sector

		speed: speed of move

		delay: delay before reversing direction

		height: relative height in 8 pixel units

	 Relative platform move.

 64:Plat_UpWaitDownStay / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector

		speed: speed of move

		delay: delay before reversing direction

	 One cycle of raising and lowering.

 65:Plat_UpByValue / tag / speed / delay / height / arg5

		tag: tag of affected sector

		speed: speed of move

		delay: delay before reversing direction

		height: relative height

	 Relative platform move.

 29:Pillar_Build / tag / speed / height / arg4 / arg5

		tag: tag of affected sector

		speed: speed of build

		height: height (relative to floor) where

	 Makes the floor meet the ceiling.

 30:Pillar_Open / tag / speed / f_height / c_height / arg5

		tag: tag of affected sector

		speed: speed of build

		f_height: relative height to move floor down

		c_height: relative height to move ceiling up

	 Makes the floor and the ceiling meet by moving both.

 94:Pillar_BuildAndCrush / tag / speed / height / crush / arg5

		tag: tag of affected sector

		speed: speed of build

		height: height (relative to floor) where floor meets ceiling

		crush: damage from crushing

 Stair Specials

 These stair building specials find the sector with 'tag' and

 build stairs by traversing adjacent sector marked with the

 StairSpecial1 and StairSpecial2. These specials must alternate

 between the two and must not branch.

 26:Stairs_BuildDown / tag / speed / height / delay / reset

		tag: tag of sector to start in

		speed: speed of build [0.255]

		height: height of step in pixels

		delay: delay between steps in tics

		reset: delay before stairs to reset (0==no reset)

 27:Stairs_BuildUp / tag / speed / height / delay / reset

		tag: tag of sector to start in

		speed: speed of build [0.255]

		height: height of step in pixels

		delay: delay between steps in tics

		reset: delay before stairs to reset (0==no reset)

 31:Stairs_BuildDownSync / tag / speed / height / reset / arg5

		tag: tag of sector to start in

		speed: speed of build [0.255]

		height: height of step in pixels

		reset: delay before stairs to reset (0==no reset)

 32:Stairs_BuildUpSync / tag / speed / height / reset / arg5

		tag: tag of sector to start in

		speed: speed of build [0.255]

		height: height of step in pixels

		reset: delay before stairs to reset (0==no reset)

 Door Specials

 10:Door_Close / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector or zero if line is part of door

		speed: speed of move

	 Closes a door sector.

 11:Door_Open / tag / speed / arg3 / arg4 / arg5

		tag: tag of affected sector or zero if line is part of door

		speed: speed of move

	 Opens a door sector.

 12:Door_Raise / tag / speed / delay / arg4 / arg5

		tag: tag of affected sector or zero if line is part of door

		speed: speed of move

		delay: delay before door lowers

 13:Door_LockedRaise / tag / speed / delay / lock / arg5

		tag: tag of affected sector or zero if line is part of door

		speed: speed of move

		delay: delay before door lowers

		lock: key number that will unlock door (see key numbers)

	 Raises a door if correct key is in inventory of triggering player.

 Script Specials

 80:ACS_Execute / script / map / s_arg1 / s_arg2 / s_arg3

		script: script number to execute

		map: map which contains the script

 81:ACS_Suspend / script / map / arg3 / arg4 / arg5

		script: script number to suspend

		map: map which contains the script

 82:ACS_Terminate / script / map / arg3 / arg4 / arg5

		script: script number to suspend

		map: map which contains the script

 83:ACS_LockedExecute / script / map / s_arg1 / s_arg2 / lock

		script: script number to suspend

		map: map which contains the script

		lock: key number needed to run script (see key numbers)

 Light Specials

 110:Light_RaiseByValue / tag / value / arg3 / arg4 / arg5

		tag: tag of affected sector

		value: relative value of light level change

 111:Light_LowerByValue / tag / value / arg3 / arg4 / arg5

		tag: tag of affected sector

		value: relative value of light level change

 112:Light_ChangeToValue / tag / value / arg3 / arg4 / arg5

		tag: tag of affected sector

		value: absolute value of light level change

 113:Light_Fade / tag / value / tics / arg4 / arg5

		tag: tag of affected sector

		value: absolute value of light level change

		tics: number of tics to fade to light level

 114:Light_Glow / tag / upper / lower / tics / arg5

		tag: tag of affected sector

		upper: brightest light level

		lower: lowest light level

		tics: number of tics between light changes

 115:Light_Flicker / tag / upper / lower / arg4 / arg5

		tag: tag of affected sector

		upper: brightest light level

		lower: lowest light level

 116:Light_Strobe / tag / upper / lower / u-tics / l-tics

		tag: tag of affected sector

		upper: brightest light level

		lower: lowest light level

		u-tics: tics to stay at upper light level

		l-tics: tics to stay at lower light level

 Miscellaneous Specials

 121:Line_SetIdentification / line / arg2 / arg3 / arg4 / arg5

		line: unique id of this line

	 The script functions setlineblocking, setlinespecial, and

	 setlinetexture use the ID specified here to identify lines.

 100:Scroll_Texture_Left / speed / arg2 / arg3 / arg4 / arg5

 101:Scroll_Texture_Right / speed / arg2 / arg3 / arg4 / arg5

 102:Scroll_Texture_Up / speed / arg2 / arg3 / arg4 / arg5

 103:Scroll_Texture_Down / speed / arg2 / arg3 / arg4 / arg5

		speed: speed of scroll in pixels

 129:UsePuzzleItem / item / script / s_arg1 / s_arg2 / s_arg3

		item: item number needed to activate

		script: script to run upon activation

	 Runs a script upon use of appropriate puzzle item:

	 0 ZZ_Skull

	 1 ZZ_BigGem

	 2 ZZ_GemRed

	 3 ZZ_GemGreen1

	 4 ZZ_GemGreen2

	 5 ZZ_GemBlue1

	 6 ZZ_GemBlue2

	 7 ZZ_Book1

	 8 ZZ_Book2

	 9 ZZ_Skull2

	 10 ZZ_FWeapon

	 11 ZZ_CWeapon

	 12 ZZ_MWeapon

	 13 ZZ_Gear

	 14 ZZ_Gear2

	 15 ZZ_Gear3

	 16 ZZ_Gear4

 140:Sector_ChangeSound / tag / sound / arg3 / arg4 / arg5

		tag: tag of sector to contain sound

		sound: sound to be played - see sector sounds

 120:Radius_Quake / intensity / duration / damrad / tremrad / tid

		intensity: strength of earthquake in richters [1..9]

		duration: duration in tics [1..255]

		damrad: radius of damage in 64x64 cells [0..255]

		tremrad: radius of tremor in 64x64 cells [0..255]

		tid: TID of map thing(s) for quake foci

	 Creates an earthquake at all matching foci.

 138:Floor_Waggle / tag / amplitude / speed / delay / oscillations

		tag: tag of sector to waggle

		amplitude: height of change

		speed: rate of change

		delay: delay until start of change

		oscillations: number of up/down cycles

	 Creates an earthquake at all matching foci.

 74:Teleport_NewMap / map / position / arg3 / arg4 / arg5

		map: map to teleport to

		position: corresponds to destination player start spot arg0.

	 Teleports the player to a new map and to the player start spot

	 whose arg0 member matches 'position.'

 75:Teleport_EndGame / arg1 / arg2 / arg3 / arg4 / arg5

	 Ends game and runs finale script.

	 In deathmatch, teleports to level 1.

 70:Teleport / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of destination

	 Teleports triggering object to MapSpot with tid.

 71:Teleport_NoFog / tid / arg2 / arg3 / arg4 / arg5

	 Same as teleport, but silent with no fog sprite.

 Thing Specials

 72:ThrustThing / angle / distance / arg3 / arg4 / arg5

		angle: byte angle to thrust [0..255]

		distance: distance to thrust

 73:DamageThing / damage / arg2 / arg3 / arg4 / arg5

		damage: amount of damage

 130:Thing_Activate / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of thing to activate (see activatable things)

 131:Thing_Deactivate / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of thing to deactivate (see deactivatable things)

 132:Thing_Remove / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of thing to remove

 133:Thing_Destroy / tid / arg2 / arg3 / arg4 / arg5

		tid: TID of affected thing

	 Puts thing into its death state.

 134:Thing_Projectile / tid / type / angle / speed / vspeed

		tid: TID of spawn location

		type: Type of thing to spawn (see spawnable things)

		angle: byte angle of projectile

		speed: speed of projectile

		vspeed: vertical speed

	 Spawns a projectile.

 136:Thing_ProjectileGravity / tid / type / angle / speed / vspeed

		tid: TID of spawn location

		type: Type of thing to spawn (see spawnable things)

		angle: byte angle of projectile

		speed: speed of projectile

		vspeed: vertical speed

	 Spawns a projectile with gravity.

 135:Thing_Spawn / tid / type / angle / arg4 / arg5

		tid: TID of spawn location

		type: Type of thing to spawn (see spawnable things)

		angle: byte angle of thing to face

	 Spawns a thing.

 137:Thing_SpawnNoFog / tid / type / angle / arg4 / arg5

		tid: TID of spawn location

		type: Type of thing to spawn (see spawnable things)

		angle: byte angle of projectile

	 Spawns a thing silently.

 PolyObject Specials

 1:Polyobj_StartLine / po / mirror / sound / arg4 / arg5

		po: refer to a particular polyobj

		mirror: poly that will mirror the moves of this poly

		sound: See Section 5: Sector Sound

 2:Polyobj_RotateLeft / po / speed / angle / arg4 / arg5

		po: polyobj

		speed: speed

		angle: byte angle to rotate

 3:Polyobj_RotateRight / po / speed / angle / arg4 / arg5

		po: polyobj

		speed: speed

		angle: byte angle to rotate

 4:Polyobj_Move / po / speed / angle / distance / arg5

		po: polyobj

		speed: speed

		angle: byte angle to move along

		distance: byte distance to move

 5:Polyobj_ExplicitLine / po / order / mirror / sound / arg5

		po: polyobj

		order: rendering order of this line

		mirror: poly that will mirror the moves of this poly

		sound: See Section 5: Sector Sound

 6:Polyobj_MoveTimes8 / po / speed / angle / distance / arg5

		po: polyobj

		speed: speed

		angle: byte angle

		distance: byte distance to move in units of 8

 7:Polyobj_DoorSwing / po / speed / angle / delay / arg5

		po: polyobj

		speed: speed

		angle: byte angle

		delay: delay in tics

 8:Polyobj_DoorSlide / po / speed / angle / distance / delay

		po: polyobj

		speed: speed

		angle: byte angle

		distance: byte distance

		delay: delay in tics

 90:Polyobj_OR_RotateLeft / po / speed / angle / arg4 / arg5

 91:Polyobj_OR_RotateRight / po / speed / angle / arg4 / arg5

 92:Polyobj_OR_Move / po / speed / angle / distance / arg5

 93:Polyobj_OR_MoveTimes8 / po / speed / angle / distance / arg5

 The OR stands for OverRide. As stated before, each poly can only be doing

 a single action at a time. This poses a problem with perpetual polyobjs,

 since they are already moving, the designer cannot do anything else with

 them.

 However, using these functions the designer can override the code to not

 allow a poly to concurrently execute more than one action, and force a poly

 to do the other action as well.

14
.
 Sector Sounds for ChangeSectorSound() special:

=======================================

	1 heavy

	2 metal

	3 creak

	4 silence

	5 lava

	6 water

	7 ice

	8 earth

	9 metal2

15
.
 Sounds for ThingSound() (Added by SBS)

=====================================

 void thingsound(int tid, str name, int volume);

 str name possible names (can be found in SNDINFO lump)

	 PLAYER SOUNDS

=============================

 PlayerLand

 PlayerPoisonCough

 PlayerFallingSplat

 Fighter

==========

 PlayerFighterNormalDeath

 PlayerFighterCrazyDeath

 PlayerFighterExtreme1Death

 PlayerFighterExtreme2Death

 PlayerFighterExtreme3Death

 PlayerFighterPain

 PlayerFighterGrunt

 PlayerFighterFallingScream

 PlayerFighterBurnDeath

 PlayerFighterFailedUse

 FighterPunchMiss

 FighterPunchHitWall

 FighterPunchHitThing

 FighterAxeHitThing

 FighterHammerMiss

 FighterHammerHitWall

 FighterHammerHitThing

 FighterHammerContinuous

 FighterHammerExplode

 FighterSwordFire

 FighterSwordExplode

 FighterGrunt

 Cleric

==========

 PlayerClericNormalDeath

 PlayerClericCrazyDeath

 PlayerClericExtreme1Death

 PlayerClericExtreme2Death

 PlayerClericExtreme3Death

 PlayerClericPain

 PlayerClericGrunt

 PlayerClericFallingScream

 PlayerClericBurnDeath

 PlayerClericFailedUse

 ClericCStaffFire

 ClericCStaffExplode

 ClericCStaffHitThing

 ClericFlameFire

 ClericFlameExplode

 ClericFlameCircle

 HolySymbolFire

 SpiritActive

 SpiritAttack

 SpiritDie

 Mage

=========

 PlayerMageNormalDeath

 PlayerMageCrazyDeath

 PlayerMageExtreme1Death

 PlayerMageExtreme2Death

 PlayerMageExtreme3Death

 PlayerMagePain

 PlayerMageGrunt

 PlayerMageFallingScream

 PlayerMageBurnDeath

 PlayerMageFailedUse

 MageWandFire

 MageLightningFire

 MageLightningContinuous

 MageLightningReady

 MageLightningZap

 MageShardsFire

 MageShardsExplode

 MageStaffFire

 MageStaffExplode

 Pig

=========

 PigActive1

 PigActive2

 PigPain

 PigAttack

 PigDeath

=======
========================

	 MONSTER SOUNDS

===============================

 Bishop

==========

 BishopSight

 BishopActive

 BishopPain

 BishopAttack

 BishopDeath

 BishopMissileExplode

 BishopBlur

 Centaur

===========

 CentaurSight

 CentaurActive

 CentaurPain

 CentaurAttack

 CentaurDeath

 CentaurLeaderAttack

 CentaurMissileExplode

 Serpent

==============

 SerpentSight

 SerpentActive

 SerpentPain

 SerpentAttack

 SerpentMeleeHit

 SerpentDeath

 SerpentBirth

 SerpentFXContinuous

 SerpentFXHit

 Demon

===============

 DemonSight

 DemonActive

 DemonPain

 DemonAttack

 DemonDeath

 DemonMissileFire

 DemonMissileExplode

 Wraith

===============

 WraithSight

 WraithActive

 WraithPain

 WraithAttack

 WraithDeath

 WraithMissileFire

 WraithMissileExplode

 Maulator

================

 MaulatorSight

 MaulatorActive

 MaulatorPain

 MaulatorHamSwing

 MaulatorHamHit

 MaulatorMissileHit

 MaulatorDeath

 Ettin

==============

 EttinSight

 EttinActive

 EttinPain

 EttinAttack

 EttinDeath

 Fire Demon

==============

 FireDemonSpawn

 FireDemonActive

 FireDemonPain

 FireDemonAttack

 FireDemonMissileHit

 FireDemonDeath

 Ice Guy

==============

 IceGuySight

 IceGuyActive

 IceGuyAttack

 IceGuyMissileExplode

 Sorcerer Boss

==============

 SorcererSight

 SorcererActive

 SorcererPain

 SorcererSpellCast

 SorcererBallWoosh

 SorcererDeathScream

 SorcererBishopSpawn

 SorcererBallPop

 SorcererBallBounce

 SorcererBallExplode

 SorcererBigBallExplode

 SorcererHeadScream

 Dragon

==============

 DragonSight

 DragonActive

 DragonWingflap

 DragonAttack

 DragonPain

 DragonDeath

 DragonFireballExplode

 Korax

==============

 KoraxSight

 KoraxActive

 KoraxPain

 KoraxAttack

 KoraxCommand

 KoraxDeath

 KoraxStep

 Korax Voice sounds

================

 KoraxVoiceGreetings

 KoraxVoiceReady

 KoraxVoiceBlood

 KoraxVoiceGame

 KoraxVoiceBoard

 KoraxVoiceWorship

 KoraxVoiceMaybe

 KoraxVoiceStrong

 KoraxVoiceFace

 Alternate monster pain sound (in gas cloud, lightning zapped, wraithverged)

 PuppyBeat

=================================

	 WORLD SOUNDS

=================================

 Platform Sounds

=================

 PlatformStart

 PlatformStartMetal

 PlatformStop

 StoneMove

 MetalMove

 Door Sounds

=================

 DoorOpen

 DoorLocked

 DoorOpenMetal

 DoorCloseMetal

 DoorCloseLight

 DoorCloseHeavy

 DoorCreak

=====================================

	 MISCELLANEOUS SOUNDS

=====================================

 BatScream

 BellRing

 BlastRadius

 Chat

 ClockTick

 Drip

 EarthStartMove

 Earthquake

 EtherealTeleport

 Fireball generic fireball projectile

 FlyBuzz

 FreezeDeath

 FreezeShatter

 FlechetteBounce

 FlechetteExplode

 GlassShatter

 IceStartMove

 Ignite

 LavaMove

 LavaSizzle

 MysticIncant attached to each player affected

 PickupWeapon

 PickupArtifact

 PickupKey

 PickupItem

 PickupPiece Pickup part of the final weapon

 PoisonShroomPain

 PoisonShroomDeath

 PotteryExplode

 PuzzleFailFighter

 PuzzleFailCleric

 PuzzleFailMage

 PuzzleSuccess

 Respawn

 RopePull

 SludgeGloop

 StartupTick

 SuitofArmorBreak

 Switch1

 Switch2

 SwitchOtherLevel

 Teleport

 ThrustSpikeRaise

 ThrustSpikeLower

 ThunderCrash

 TreeBreak

 TreeExplode

 UseArtifact

 ValveTurn

 WaterMove

 WaterSplash

 WeaponBuild Built the final weapon

 Wind

 Ambient sounds

=================

 Ambient1 insects1

 Ambient2 crkets

 Ambient3 crkets1

 Ambient4 katydid

 Ambient5 frogs

 Ambient6 owl

 Ambient7 bird

 Ambient8 shlurp

 Ambient9 bubble

 Ambient10 drop2

 Ambient11 rocks

 Ambient12 chains

 Ambient13 gong

 Ambient14 steel1

 Ambient15 steel2

16
.
 Key Numbers

==================

 These are referenced by the DoorRaiseLocked() and ACS_ExecuteLocked()

 specials.

	1 steel key

	2 cave key

	3 axe key

	4 fire key

	5 emerald key

	6 dungeon key

	7 silver key

	8 rusted key

	9 horn key

	10 swamp key

	11 castle key

End of Specs

=========

